D ec 1 99 7 Matrix elements of vertex operators of deformed W - algebra and Harish Chandra Solutions to Macdonald ’ s difference equations

نویسنده

  • Harish Chandra
چکیده

In this paper we prove that certain matrix elements of vertex operators of deformed W-algebra satisfy Macdonald difference equations and form n! -dimensional space of solutions. These solutions are the analogues of Harish Chandra solutions with prescribed asymptotic behavior. We obtain formulas for analytic continuation as a consequence of braiding properties of vertex operators of deformed W-algebra.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macdonald Difference Operators and Harish-chandra Series

We analyze the centralizer of the Macdonald difference operator in an appropriate algebra of Weyl group invariant difference operators. We show that it coincides with Cherednik’s commuting algebra of difference operators via an analog of the Harish-Chandra isomorphism. Analogs of Harish-Chandra series are defined and realized as solutions to the system of basic hypergeometric difference equatio...

متن کامل

Daha and Bispectral Quantum Kz Equations

We use the double affine Hecke algebra of type GLN to construct an explicit consistent system of q-difference equations, which we call the bispectral quantum Knizhnik-Zamolodchikov (BqKZ) equations. BqKZ includes, besides Cherednik’s quantum affine KZ equations associated to principal series representations of the underlying affine Hecke algebra, a compatible system of q-difference equations ac...

متن کامل

Inverse Harish - Chandra transform and difference operators

In the paper we calculate the images of the operators of multiplication by Laurent polynomials with respect to the Harish-Chandra transform and its non-symmetric generalization due to Opdam. It readily leads to a new simple proof of the Harish-Chandra inversion theorem in the zonal case (see [HC,He1]) and the corresponding theorem from [O1]. We assume that k > 0 and restrict ourselves to compac...

متن کامل

2 4 Ju l 2 00 1 Symplectic reflection algebras , Calogero - Moser space , and deformed

To any finite group Γ ⊂ Sp(V ) of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, Hκ, of the algebra C[V ]#Γ, smash product of Γ with the polynomial algebra on V . The parameter κ runs over points of P, where r =number of conjugacy classes of symplectic reflections in Γ. The algebra Hκ, called a symplectic reflection algebra, is related to the coordi...

متن کامل

Invariant Differential Operators on a Real Semisimple Lie Algebra and Their Radial Components

Let S(g ) be the symmetric algebra over the complexification 9 of the real semisimple Lie algebra g. For u £ S(g ), d(u) is the corresponding differential operator on g. 3)(g) denotes the algebra generated by d(S(g )) and multiplication by polynomials on g . For any open set U C t, Diff (LO is the algebra of differential operators with C°°-coefficients on U. Let t be a Cartan subalgebra of g, f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999